Joan Dis 13
Friday, April 26,2019 2:11 PM j O V)

Section 13 Distributed Systems

CS162
April 26th, 2019

Contents
1 Vocabulary

2 Problems
2.1 Distributed Systems
2.2 A Simple 2PC
2.3 CAP Theorem

it DR AW AT

Wl

CS 162 Spring 2019 Section 12: Distributed Systems

1 Vocabulary

e Logging file system - A logging file system (or journaling file system) is a file system in which

all updates are performed via a transaction log (“journal”) to ensure consistency, in case the
system crashes or loses power. Each file system transaction is first written to an append-only
redo log. Then, the transaction can be committed to disk. In the event of a crash, a file system
recovery program can scan the journal and re-apply any transactions that may not have completed
successfully. Each transaction must be idempotent, so the recovery program can safely re-apply
them.

TPC/2PC - Two Phase Commit is an algorithm that coordinates transactions between one coor-
dinator (Master) and many slaves. Transactions that change the state of the slave are considered
TPC transactions and must be logged and tracked according to the TPC algorithm. TPC ensures
atomicity and durability by ensuring that a write happens across ALL replicas or NONE of them.
The replication factor indicates how many different slaves a particular entry is copied among. The
sequence of message passing is as follows:

for every slave replica and an ACTION from the master,

?figin [MESSAGE] -> dest : L'ea dp V/ \/J ov ke r

_MASTER [VOTE-REQUEST(ACTION)] -> SLAVE
SLAVE [VOTE-ABORT/COMMIT] -> MASTER
MASTER [GLOBAL-COMMIT/ABORT] -> SLAVE
STAVE TACK] -> MASTER

If at least one slave votes to abort, the master sends a GLOBAL-ABORT. If all slaves vote to
commit, the master sends GLOBAL-COMMIT. Whenever a master receives a response from a
slave, it may assume that the previous request has been recognized and committed to log and is
therefore fault tolerant. (If the master receives a VOTE, the master can assume that the slave has
logged the action it is voting on. If the master receives an ACK for a GLOBAL-COMMIT, it can
assume that action has been executed, saved, and logged such that it will remain consistent even
if the slave dies and rebuilds.)

RPC - Remote procedure calls (RPCs) are simply cross-machine procedure calls. These are usually
implemented through the use of stubs on the client that abstract away the details of the call. From
the client, calling an RPC is no different from calling any other procedure. The stub handles the
details behind marshalling the arguments to send over the network, and interpreting the response
of the server.

General’s Paradox - The idea that there is no way to guarantee that two entities do something
simultaneously if they can only send messages to each other over an unreliable network. There is
no way to be sure that the last message gets through, so one entity can never be sure that the
other entity will act at a specific time.

<

AL AU A

WLl—

CS 162 Spring 2019 Section 12: Distributed Systems

2

Problems

2.1 Distributed Systems

a)

b)

Consider a distributed key-value store using a directory-based architecture.

i) What are some advantages and disadvantages to using a recursive query system?

ii) What are some advantages and dlbadvanta es to mg an iterative query system?

/ N\

Quorum consensus: Consider a fault-tolerant distributed key-value store where each piece of data
is replicated N times. If we optimistically return from a put() call as soon as we have received

acknowledgements from W replicas, how many eri\cas mlyre wait for a response from in a get()

query in order to guarantee consistency?

In a distributed key-value store, we need some way of hashing our keys in order to roughly evenly
distribute them across our servers. A simple way to do this is to assign key K to server i such that
¢ =hash(K) mod N, where N is the number of servers we have. However, this scheme runs into an
issue when N changes — for example, when expanding our clister or when machines go down. We
would have to re-shuffle all the objects in our syste
a massive amount of requests and causing disastrous Mowdown. Propose a hashing scheme (just an
idea is fine) that minimizes this problem.

CS 162 Spring 2019 Section 12: Distributed Systems

2.2 A Simple 2PC

Suppose you had a remote storage system composed of a client (you), a single master server, and a single
slave server. All units are separated from each other and communicate using RPC. There is no caching
or local memory; all requests are eventually serviced using the backing store (disk) of the slave. The
slave guards itself against failure by committing entries to a non-volatile log that never gets deleted in
the event of a crash. The system only understands PUT(VALUE) and DEL(VALUE) commands, where
VALUE is an arbitrary string. Calls to DEL on values that dont exist cause the slave to VOTE-ABORT.
Suppose you issue the following sequence of commands. Recall that the correct sequence of message
passing is CLIENT - MASTER - SLAVE - MASTER - CLIENT. Calls to PUT on values that already
exist cause VOTE-ABORT.

- PUT(I LOVE)

- PUT(OPERATING SYSTEMS)

- DEL(I LOVE)

- DEL(I LOVE)

- PUT(GOBEARS)

What is the sequence of messages sent and received by the MASTER server? List communications
with the slave only. Your answer should be a list of the form:

SEND: PUT(XXX)
RECIEVE: VOTE-XXX

SEND: DEL(XXX)

‘ a :
ST, iy

send 7b1m| commif o G borf
\(‘ece,(\& oCks

.
‘

CS 162 Spring 2019

Section 12: Distributed Systems

What is the sequence of messages committed to the log of the slave?

Ut (T love)
CQW\'VVLI""
p0T (0¢)

C,WV\W\H'
pEL. (T lot)
pi

by
%\)I?‘((:‘lo Bwi’)

R e
2.3 Meorem

This question is not in scope, but may be an interesting concept to think about.
One of the most famous and relevant distributed systems concepts today is the CAP theorem, first
conjectured by Professor Eric Brewer (Berkeley) in 1998. It states that it is impossible for a distributed

system to simultaneously have all three of the following properties:

(@

e e - Aw\l{ b\(/«u! \/Ml

__QK—(—\,\(/\ evr

AP: pdven old vl
pCp: perkct Commuanictn

Velve

Consistency: every read must be correct, and so can either return the most recent write or an error
Availability: every read must not return an error, but does not necessarily have to return the most

recent write

Partition Tolerance: the system must be able to continue to operate despite an arbitrary number of
messages between nodes dropped or delayed, such as in the event of a complete network partition.

Many systems are architecture to have two of the three properties, and some even have just one or none.
For example, a system that is Consistent and Available (CA) must always return the most recent write

for every read, without fail.

Because of the nature of distributed systems, network partitions are considered an inevitable fact of life.
Thus many distributed applications are forced to be either CP or AP, forfeiting either C or A in favor

of partition tolerance.

CS 162 Spring 2019 Section 12: Distributed Systems

1. The proof for the CAP theorem, while conceptually simple, was not formulated until 2002 by
Gilbert and Lynch (MIT). Imagine you had a distributed database with two nodes, and a client
that can read or write to either of the nodes. Intuitively, argue why this system cannot achieve all

v

three CAP properties.

LSS\ 1\7

2. Key value stores sometimes use Two Phase Commit to update the value of its keys. What CAP

pro tiei does the 2PC protocol exhibit?
Y ho Commit = 7!01%1’ abovH

VlOP

3. The consistency defined for the CAP theorem rgfers to strong consistency, of which there are two
variants:

e Linearizable consistency: all operations are executed atomically in the real time order in
which they are created by the clients.

e Sequential consistency: operations can be reordered, but this new order must be consistent
across all nodes.

There are also variants of weak consistency. A famous one is eventual consistency:

e Eventual consistency: if no new updates are made to a key, then eventually all nodes will

agreeomtiretast=ralue for that key.

Is it possible to achieve all three CAP properties if C referred to weak consistency instead of strong
consistency?

CS 162 Spring 2019 Section 12: Distributed Systems

CAP “J) W(&\(C C 1S Poéf.;bi:.

m/o

=4SN

Q/m?,_

