Jon 101 Dis

Tuesday, September 4, 2018 9:57 PM

G5 61C C Basics
FaH 2018 Discussion 2: September 3, 2018

1 C

C is syntactically similar to Java, but there are a few key differences:
1. C is function-oriented, not object-oriented; there are no objects.
2. C does not automatically handle memory for you.

e Stack memory, or things allocated the way you’re accustomed to: data is
garbage immediately after the function in which it was defined returns.

e Heap memory, or things allocated with malloc, calloc, or realloc com-
mands: data is freed only when the programmer explicitly frees it!

e In any case, allocated memory always holds garbage until it is initialized!

3. C uses pointers explicitly. *p tells us to use the value that p points to, rather
than the value of p, and &x gives the address of x rather than the value of x.

On the left is the memory represented as a box-and-pointer diagram. »(

On the right, we see how the memory is really represented in the computer. g_'

OXFFFFFFFF OXFFFFFFFF /_@
0xF93209B0 | x=0x61C 0xF93209B0 ax6ic | A P
0xF93209AC | Ox2A 0XF93209AC 0x2A 9 \ 3 ~— \

P B

0xF9320904 0xF9320904 | 0xF93209AC
0xF9320900 pp L) 0xF9320900 | 0xF9320904 y\,\_ )¥ F L X /
0x00000000 0x00000000

50
Let’s assume that intx p is located at 9xF9320904 and int x is located at
0xF93209B0. As weﬁserve:

e *xp should return 9x2A (4219).

e p should return 9xF93209AC.

. :jhould return 0x61C.

e &x should return 9xF93209B0.

Let’s say we have an int x*pp that is located at 0xF9320900.
What does pp evaluate to? How about *pp? What about x*pp? — 9\ 0 q 0 L(
S ox Fa3
?? % é P OX Ox?quc‘i/}(_
Eas ??’V“ 1A
_ G

0 Kpp=Ap=2°



grrfo)r arr -

2 C Basics i \ l ,L \ 3 L.{
The following functions are syntactically-correct C, but written in an incomprehen- @

sible style. Describe the behavior of each function in plain English. /I\
(a)|Recall that the ternary operator evaluates the condition before the ? and re-
turns the value before the colon (:) if true, or the value after it if false. 0\\"{
1 int foo(int *arr, size_t n) { % F\’ _‘_ m 6 EWQVIJ’S
2 return n ? arr(@] + foo(arr + 1, n - 1) : 0; §lAVVl§ VS
3%
(b) Recall that the negation operator, !, returns 0 if the value is non-zero, and 1 % CL

if the value is 0. The ~ operator performs a bitwise not (NOT) operation.

1 int bar(int *arr, size_t n) { /D
2 int sum = 9, i;

3 for (i =n; i>0; i--)

4 sum += larr[i - 11;

5 return “sum + 1;

6 3

(c) \Recall that " is the bitwise exclusive-or (XOR) operator. “ct)
nb pewsi

l voidxbiz)((ir:tyi(, int y) { \() Cq\\y SIS X d'\j /

X
4 x "y;

_—————
5 3

.

D/\]:)

2 Programming with Pointers

R \')/\):Q X
X

Implement the following functions so that they work as described. i /\_J_ ? .
/

a) Swap the value of two ints. Remain s ed after returni this tion. N

(a) Swap the value of two ints. Remain swapped after returning from this function \M‘{— C(,I

void swap( ik N X /(\M‘} A 3
Y- ‘%XAM&;{ Suop (L%, 4.4,)
Xy = *X"lié;l

. *% = k¥ Xy;

(b) Return the number of bytes in a string. Do not use strlen.

int mystrlen(



The following functions may contain logic or syntax errors. Find and correct them.

(a)

2

C Basics 3

Returns the sum of all the elements in summands. D.F O\ Fé ]\Vl r
int sum(int* summands){ %-[ ‘%e-’k V‘) 1 €
int sum = 0; m (T\
for (int i = 9; i < Ms); i++)
sum += *(summands + i);
return sum;

Increments all of the letters in the string which is stored at the front of an
array of arbitrary length, n >= strlen(string). Does not modify any other
parts of the array’s memory.

void increment(char* string, int n) {
for (int i = @; i < n; i++)

*(string + i)++;
3
home

Copies the string src to dst.

void copy(char* src, charx dst) {
while (xdst++ = *src++);

(‘,\/\UN’ 5rC, 065"

Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src. iv¢4 ){ C)\ }/

void cs6lc(char* src, size_t length . \
( gth) ot La
char *srcptr,#rxeplaceptr;

srcptr = src;

X

char replacement[16] = "61C is am CL\(M’ 31# §TC ; Cl/\af des-]_

replaceptr = replacement;
if (length >= 16) {
for (int i = 0; i < 16; i++)
*srcptr++ = *replaceptr++;



4 C Basics |,,F-"'F ‘,:

3 Memory Management { /fS)'U(,‘C
w\j' x> 3 e o~ emﬁy

For each part, choose one or more of the following memory segments where the data \-
could be located: code, static, heap, stack. \ v 1\
¢ 5

(a) Static variables \C

Local variables S+0(;K CQ d o Dﬁ{"\(_ /\’i:b
Global variables —}w\ (o ‘\/\-S\d‘/ o~ —F\Am

~
Constants S% C
Machine Instructions C w C

(f) Result of malloc L\eq

(g) String Literals \\ S h h9 t _ g\-m'h‘ &

Write the code necessary to allocate memory on the heap in the following scenarios
P ———

\

)
)
)
)
)
)

00...00

(a) An array arr of k integers
(b) A string str containing p characters

(¢) An n x m matrix mat of integers initialized to zero.

Suppose we've defined a linked list struct as follows. Assume *1st points to the
first element of the list, or is NULL if the list is empty.

struct 11_node {

int first; \\/[/l()d“e,
struct 11_node* rest;

) 19+ Wead
Implement prepend, which adds one new value to the front of the linked list. 3—_/7 O__,.—-—’

void prepend(struct 11_nodex* 1lst, int value)
——

\¢+ 7
3—1

Implement free_11, which frees all the memory consumed by the linked list.

{J-1)

void free_l1l(struct 11_nodex*x lst)



