Jon Dis 5 Notes

Sunday, September 23,2018 5:36 PM

CS 61C RISC-V Addressing and Caches
Discussion b: Septcmbcr 24, 2018

Fall 2018

1 RISC-V Addressi

ng

We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the in-

struction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address (jr)

& What is range of 32-bit instructions that can be reached from the current PC using

a branch instruction? \'l b\—‘—s __? Ca“ Q“ [] hp‘[-ﬁ WN’D‘S

7[9\ © 9] words

Q What is the range of 32-bit instructions that can be reached f10m the current PC

using a jump instruction? ')_0 b -l—s 7 C 3.14) 9\ _lj hah[WWAS

J[ng

Wovok

& Given the following RISC-V code (and 111‘:]11Lt10r1 addresses), fill in the blank fields OP ' ’S

for the following instructions (

0x002cff00: loop: add t1,

*qaiz 0x002cffo4: — jal ra,
0x002cffo8: bne t1,

—

5 Ox002cff2c: foo: Jr ra

(vou’ll need youy,

heo ©
t2, to

foo
zero, loop

O—

RISC-V green card!).

D gl:?-loléﬁ;a(

|0 |0X[L{ OTD| | o |__ox6F__|
|\'013F| O NG 1 o]l exes|

= 0¥002eL€06¢

me” Shegk _/"‘\

add* R -\-‘ﬂx_ H—‘\mc? [rs2] r<l IW L= x6

i A UT Hype
bne - S YR
®

find type

2% Ja\:/ Ox 000y

findk Rrmadt £ill w W/ st pchh
Oy 00 ¢ FF 2c [0 MS

B ofksels

oDOOO(OlDQZO

— - 0O
= Ox28%=0) 000|000 = - |—torl 1,0 bt #

Ozt fnd dafa in blocle
indey © And blode w (
2 Understanding T/I/O .‘_&9 s eVlSuH. Weire lbbkﬁﬂj

When working with caches, we have to be able to break down the memory addresses

2 RISC-V Addressing and Caches

we work with to understand where they fit into our caches. There are three fields:

Tag -

bits: leftovers

Used to ll‘-;t nguish different blocks that use the same index - Number of

ver ok
Index - The set that this piece of memory will be placed in - Number of bits: log,(#

of indices)
Offset - The location of the byte in the block - Number of bits: log,(size of block)

Assume we have a direct-mapped byte-addressed cache with capacity 32B and block
—_—
size of 8B. Of the 32 bits in each address, which bits do we use to find the index of ~

3 ;18 = Wdex = |
0ffge = log 2= 3 = Ubs 03
Which bits are our tag bits? What about our off‘mt? kA

—> Tag: 31 G Tndex: U:3 Offee}: 2:0

Classify each of the following byte memory accesses as a cache hit (H), cache miss

the cache to use?

(M), or cache miss with replacement(R). It is probably best to try drawing out
the cache before going through so that you can have an easier time seeing the

replacements in the cache. The following white space is to do this:

Address T/1/0) Hit, Miss, Replace
0x00000004 ... Ol g o 0 4 M, Comp ®
0x00000005 ... O[6 | O |l ¢ | ®
0x00000068 (((y |66D | 3 \ O | M, Comp
0x000000C8 1|00 (000 (5) 0 R tom
0x00000068 11D | OO | 3 l O R conflick
0x00000000 1(D) (L 0\ 2} > S M, (ypaP
0x00000045 O(60 O[O 2) [R. (,\IIV\.D
0x00000004) 10D | O 0 Y 2 C&Dacth/:
0x000000C8 |IDD | 00O C | O ,. CMP[A{ =y
T O 0

@R of ot herr

(athe
whex _Ted — C&Jemls aCJ X,\lri

\[' 00 Q//Z{O
o | 2L Ab |
— 0

\0
L\

.

’__/_’\
e
/
—mn

b

\
_J

v
[oj (4 wchices) dﬁ%(;l’

109 L@[Dbk &TTY)

@ Ccomect

block

Cace 5i2e
olodk siEe

MG

Cuche

s'l‘°
I O

RISC-V Addressing and Caches 3

3 TI.
3 Tlle 3 C S O{. 1\“'[18898
Classify each M and R above as one of the 3 types of misses described below: ? L '/ DR

I. Compulsory: First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having 'P‘Y‘S{' ‘l—M\L
a longer cache lines (bigger blocks), which bring in the surrounding addresses ;
along with our requested data. Can also pre-fetch blocks beforehand using a 4

hardware prefetcher (a special circuit that tries to guess the next few blocks
that you will want).

II. Conflict: Occurs if you hypothetically went through the ENTIRE string of ac- C my\ 6 rgahl %e,
cesses with a fully associative cache and wouldn’t have missed for that specific
access. Increasing the associativity or improving the replacement policy would \ge “(V

remove the miss.

ITI. Capacity: The only way to remove the miss is to increase the cache capacity, C{)-dv\!. ‘F\Al / Ce
as even with a fully associative cache, we had to kick a block out at some \ ‘ev\\(}(I}
point. 9

Note: There are many different ways of fixing misses. The name of the miss doesn’t

necessarily tell us the best way to reduce the number of misses.

4 m@ Practise

In the following diagrams, each blank box represents 1 byte (8 bits) of data. All of
memory is byte addressed.Let’s say we have a 8192KiB3 cache with an 128B block

size, how many bits are in tag, index, and offset? ‘What parts of the address of
0xFEEDFO0D fit into which sections? Q‘g -2‘“11 fD:‘f'__ 7,

20-IL-72 1 log &=

Tag Index Offset
Number of bits q [b 1

Bits of address | || \ o |1 “D (10 11\ (00000 000\ ol

Ox I (llOJlO Lol Il] o000 qooe llo)

y‘» 4.2| Now fill in the table below. Assume that we have a writt;t]l:l-rough cache, so the
‘ number of bits per row includes only the cache data, the tag, and the valid bit. 'DA.V,_-\-'\'Ds

¥ valid
Address size (bits) | Cache Size | Block Size | Tag Bits | Index Bits | Offset Bits | Bits per row 4\)

{. 16 4KiB 4B y LO 2 27

7. 32 32KiB 16B \ 3 T g [d6 only | less ‘k'ﬁ
2. 32 CHylLB| \¢ég 16 12 Yy us &7 W
U, 64 2048KiB | 1298 y3 14 = " 1068

[0 4= T [%%};— b Tlh-(0-2=4 22U+ 1 = %3
0

= 14t
, < . 2% - | m3a-U-Y= (7 129+ F+ | l
: log b= Y T: log 1€lock'-l'>“-3ltt5 ems 2 (b8 = 2= LUK

CBlaks 222 2 9% 1268 01l T 7 THby-14-7: 43

