CS 61C Fall 2018

## Caches II, Floating Point

Discussion 6: October 1, 2018

## Code Analysis

Given the follow chunk of code, analyze the hit rate given that we have a byteaddressed computer with a total memory of 1 MiB. It also features a 16 KiB Direct-Mapped cache with 1 KiB blocks.

```
#define NUM_INTS 8192 // 2^13
int A[NUM_INTS]; // A lives at 0x10000
int i, total = 0;
for (i = 0; i < NUM_INTS; i += 128) {
   A[i] = i; // Line 1
}
for (i = 0; i < NUM_INTS; i += 128) {
    total += A[i]; // Line 2
}
```

How many bits make up a memory address on this computer?

| MiB = 2<sup>20</sup>B -> 69 2<sup>20</sup> = 20 6 ts T: 20 - 10 - 4 = 6 6 ts

Calculate the cache hit rate for the line marked Line 1: jumping 4,128 = 512 B each bop

-> 2 elons fit in each block => A[i] pulls in A[i+128] >> 50% HR

Calculate the cache hit rate for the line marked Line 2:

Array Size = 213.4=215 B -> twice as big as cache 12 -> cannot fit inside -> 50% HR for reason above

## AMAT

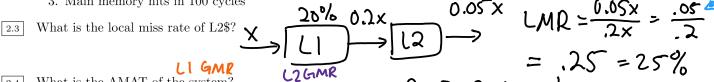
Recall that AMAT stands for Average Memory Access Time. The main formula for it is:

AMAT = Hit Time + Miss Rate \* Miss Penalty

We also have two types of miss rates, global and local. Global is calculated as: Fraction of ALL accesses that missed at that level over all accesses total. Whereas local is calculated: Fraction of ALL access that missed at that level over all access to that level total.

An L2\$, out of 100 total accesses to the cache system, missed 20 times. What is the global miss rate of L2\$?

2.2


Suppose your system consists of:

1. An L1\$ that hits in 2 cycles and has a local miss rate of 20%

notice Local MR = Global MR

2. An L2\$ that hits in 15 cycles and has a global miss rate of 5%

3. Main memory hits in 100 cycles



What is the AMAT of the system?  $\frac{24}{50}$  What is the AMAT of the system?  $\frac{2}{50}$   $\frac{4}{50}$   $\frac{2}{50}$   $\frac{4}{50}$   $\frac{1}{50}$   $\frac{1}{50}$ 

Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding using LMR in a L3\$. If the L3\$ has a local miss rate of 30%, what is the largest hit time that the L3\$ can have?

$$2 + 20\% (15 + 25\% \cdot (H + 30\% \cdot 100)) \le 8$$
  
 $H = 30$  Gycles

## 3 Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields:

- The sign determines the sign of the number (0 for positive, 1 for negative)
- The exponent is in biased notation with a bias of 127
- The significand or mantissa is akin to unsigned, but used to store a fraction instead of an integer

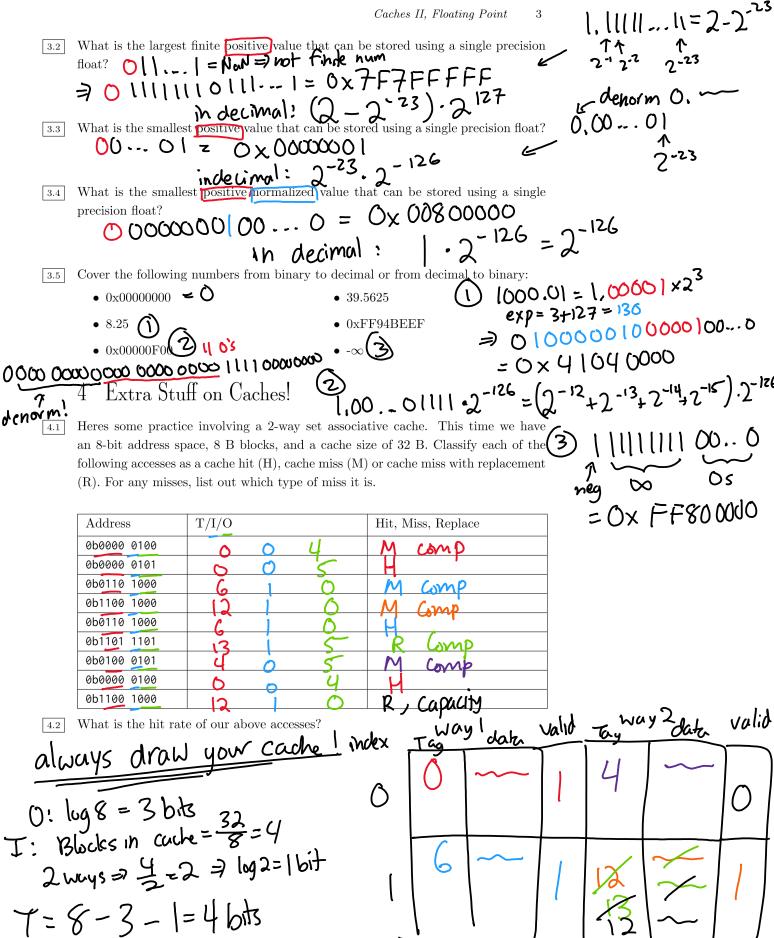
The below table shows the bit breakdown for the single precision (32-bit) representation.

| 1    | 8        | 23                            |
|------|----------|-------------------------------|
| Sign | Exponent | Mantissa/Significand/Fraction |

For normalized floats:

Value = 
$$(-1)^{Sign} * 2^{Exp-Bias} * 1.$$
significand

For denormalized floats:


$$\mathbf{Value} = (-1)^{Sign} * 2^{Exp-Bias+1} * 0.\mathbf{significand}_2$$

| Exponent | Significand | Meaning  |
|----------|-------------|----------|
| 0        | Anything    | Denorm   |
| 1-254    | Anything    | Normal   |
| 255      | 0           | Infinity |
| 255      | Nonzero     | NaN      |

your oveat sheet!

forgething denorm or on a lest question... feels bad man

How many zeroes can be represented using a float?

