Jon Discussion 11

Wednesday, July 25,2018 11:37 AM

CS 61C Summer 2018 Discussion 11 — Cache Coherency

1. MOESI Cache Coherency

MOESI Protocol A&t

Read Miss Exclusive

Read Miss
Shared

Modii>

Read Hit

(> g
Read Hit Write Hit
Read Hit
"\ <____Probe Write Hit .

Modified

Probe
Write Hit

Probe
Read Hit Probe

7/25/2017 Read Hit C561C Sul7 - Lecture 20

With the MOESI concurrency protocol implemented, accesses to cache accesses appear serializiable.
This means that the result of the parallel cache accesses appear the same as if there were done in serial

fram ana nracaconr in onma ardarinae

11ULLL VLIV PLULLODUL 111 DULLIV ULULLILE .

State Cache up to Memory up |Others have a |Can write without ﬁmﬁ,d@

date? to date? copy? changing state? -

Modified Yes No No Yes Yeés MQM

Owned |Yes No Yes No VCS

Exclusive |Yes Yes No No Ne T"Z\)
Shared |Yes Maybe Yes No ’J° \
Invalid |No Maybe Maybe No ’EQ—"J

1. Consider the following access pattern on a two-processor system with a direct-mapped, write-
back cache with one cache block and a two cache block memory. Assume the MOESI protocol is
used, with write- back caches, write-allocate, and invalidation of other caches on write (instead

of updating the value in the other caches). i
! . Memory @ 0 | Memory @ 1 CQC&L
Time| After Operation P1 cache state P2 cache state up to date? | upto date? O
0 P1: read block 1 Exclusive (1) Invalid YES YES
1 P2: rfﬂblockl Shm(() S‘lqgreak (\) \/es yeS
2 | P1:write block 1 Mod(ﬁfd(\ 1‘4(/,2! :4 ye S No M 1
3 | P2writeblockl | ' alid Mod (V) Yes Ns
4 | Plireadblock0 | @ (o) Ml)d(\\) Yes No ‘ O
5 | P2:read block 0 gh,”.(_d (6) (!40[(ACo) \,/4,5 Y—ej
6 | Pl:writeblock0 | papek (0) "’V\'le[d‘ No \[@S
7 | P2ireadblock0 | (O (Nneot (O) < _a(\pdca) No '\/ef
8 | P2:write block 0 :J:n,va\?d Mmock C (o)) No yPS
|9 | Plireadblock0 | shgnd(0) (pan (0)

2. What is the advantage of MOESI over MESI? (Hint: notice a key difference between MOESI
and MESI, what state does MOESI have that MESI doesn’t and how might that state be
advantageous?)

2. Concurrency

Consider the following function:
void transferFunds(struct account *from, struct account *to, long cents)

from->cents -= cents;
to->cents += cents;

a. What are some data races that could occur if this function is called simultaneously from two (or
more) threads on the same accounts? (Hint: if the problem isn’t obvious, translate the function
into MIPS first)

b. How could you fix or avoid these races? Can you do this without hardware support?

3. Data race and Atomic operations.

The benefits of multi-threading programming come only after you understand concurrency. Here are two
most common concurrency issues:

e Cache-incoherence: each hardware thread has its own cache, hence data modified in one thread
may not be immediately reflected in the other. The can often be solved by bypassing cache and
writing directly to memory, i.e. using volatile keyword in many languages.

e The famous Read-modify-write: Read-modify-write is a very common pattern in programming.

In the context of multi-thread programming, the interleaving of R,M,W stages often produces a
lot of icenes

To solve problem with Read-modify-write, we have to rely on the idea of undisrupted execution.

In RISC-V, we have two categories of atomic instructions:
e Load-reserve, store-conditional (undisrupted execution across multiple instructions)
e Amo.swap (single, undisrupted memory operation) and other amo operations.

Both can be used to achieve atomic primitives, here are two examples.

Test-and-set Compare-and-swap
Start:addi te x0 1 #locked state is 1 #expect old value in al,
amoswap.w.aq tl to (ae) #desired new value in a2
bne tl1 x@ Start #if the lock is not Start:1lr a3 (ae)
#free, retry bne a3 al Fail #CAS fail

sc a3 a2 (aov)

. #critical section bnez a3 Start #retry if store failed

amoswap.w.rl x0 x0 ae #trelease lock - #critical section

amoswap.w.rl x0 x0 aeo
Fail: #failed CAS

Instruction definitions:

e Load-reserve: Loads the four bytes from memory at address x[rs1], writes them to x[rd],
sign-extending the result, and registers a reservation on that memory word.

e Store-conditional: Stores the four bytes in register x[rs2] to memory at address x[rs1],
provided there exists a load reservation on that memory address. Writes @ to x[rd] if the store
succeeded, or a nonzero error code otherwise.

e Amoswap: Atomically, let t be the value of the memory word at address x[rs1], then set that
memory word to x[rs2]. Set x[rd] to the sign extension of t.

Question: why do we need special instructions for these operations? Why can’t we use normal load and
store for 1r and sc? Why can’t we expand amoswap to a normal load and store?

